Distinct Docking Mechanisms Mediate Interactions between the Msg5 Phosphatase and Mating or Cell Integrity Mitogen-activated Protein Kinases (MAPKs) in Saccharomyces cerevisiae*

نویسندگان

  • Lorena Palacios
  • Robin J. Dickinson
  • Almudena Sacristán-Reviriego
  • Mark P. Didmon
  • María José Marín
  • Humberto Martín
  • Stephen M. Keyse
  • María Molina
چکیده

MAPK phosphatases (MKPs) are negative regulators of signaling pathways with distinct MAPK substrate specificities. For example, the yeast dual specificity phosphatase Msg5 dephosphorylates the Fus3 and Slt2 MAPKs operating in the mating and cell wall integrity pathways, respectively. Like other MAPK-interacting proteins, most MKPs bind MAPKs through specific docking domains. These include D-motifs, which contain basic residues that interact with acidic residues in the common docking (CD) domain of MAPKs. Here we show that Msg5 interacts not only with Fus3, Kss1, and Slt2 but also with the pseudokinase Slt2 paralog Mlp1. Using yeast two-hybrid and in vitro interaction assays, we have identified distinct regions within the N-terminal domain of Msg5 that differentially bind either the MAPKs Fus3 and Kss1 or Slt2 and Mlp1. Whereas a canonical D-site within Msg5 mediates interaction with the CD domains of Fus3 and Kss1, a novel motif ((102)IYT(104)) within Msg5 is involved in binding to Slt2 and Mlp1. Furthermore, mutation of this site prevents the phosphorylation of Msg5 by Slt2. This motif is conserved in Sdp1, another MKP that dephosphorylates Slt2, as well as in Msg5 orthologs from other yeast species. A region spanning amino acids 274-373 within Slt2 and Mlp1 mediates binding to this Msg5 motif in a CD domain-independent manner. In contrast, Slt2 uses its CD domain to bind to its upstream activator Mkk1. This binding flexibility may allow MAPK pathways to exploit additional regulatory controls in order to provide fine modulation of both pathway activity and specificity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Conserved Non-Canonical Docking Mechanism Regulates the Binding of Dual Specificity Phosphatases to Cell Integrity Mitogen-Activated Protein Kinases (MAPKs) in Budding and Fission Yeasts

Dual-specificity MAPK phosphatases (MKPs) are essential for the negative regulation of MAPK pathways. Similar to other MAPK-interacting proteins, most MKPs bind MAPKs through specific docking domains known as D-motifs. However, we found that the Saccharomyces cerevisiae MKP Msg5 binds the MAPK Slt2 within the cell wall integrity (CWI) pathway through a distinct motif (IYT). Here, we demonstrate...

متن کامل

Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae.

Signal transduction mediated by the mitogen-activated protein kinase (MAPK) Slt2 pathway is essential to maintain the cell wall integrity in Saccharomyces cerevisiae. Stimulation of MAPK pathways results in activation by phosphorylation of conserved threonine and tyrosine residues of MAPKs. We have used an antibody that specifically recognizes dually phosphorylated Slt2 to gain insight into the...

متن کامل

A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1

The Saccharomyces cerevisiae mitogen-activated protein kinases (MAPKs) Fus3 and Kss1 bind to multiple regulators and substrates. We show that mutations in a conserved docking site in these MAPKs (the CD/7m region) disrupt binding to an important subset of their binding partners, including the Ste7 MAPK kinase, the Ste5 adaptor/scaffold protein, and the Dig1 and Dig2 transcriptional repressors. ...

متن کامل

POG1, a novel yeast gene, promotes recovery from pheromone arrest via the G1 cyclin CLN2.

In the absence of a successful mating, pheromone-arrested Saccharomyces cerevisiae cells reenter the mitotic cycle through a recovery process that involves downregulation of the mating mitogen-activated protein kinase (MAPK) cascade. We have isolated a novel gene, POG1, whose promotion of recovery parallels that of the MAPK phosphatase Msg5. POG1 confers alpha-factor resistance when overexpress...

متن کامل

Mitogen-activated protein kinase signaling in plant pathogenic fungi

Like in other eukaryotic organisms, mitogen-activated protein (MAP) kinase cascades play important roles in response to host and environmental signals in fungal pathogens. In general, mitogen-activated protein kinase (MAPK) is activated by phosphorylation at the well-conserved threonine-x-tyrosine (TXY) motif by mitogen-activated protein kinase (MEK), which is in turn activated by mitogen-activ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 286  شماره 

صفحات  -

تاریخ انتشار 2011